Polynomial Representation for the Expected Length of Minimal Spanning Trees∗
نویسندگان
چکیده
In this paper, we investigate the polynomial integrand of an integral formula that yields the expected length of the minimal spanning tree of a graph whose edges are uniformly distributed over the interval [0, 1]. In particular, we derive a general formula for the coefficients of the polynomial and use it to express the first few coefficients in terms of the structure of the underlying graph; e.g. number of vertices, edges and cycles.
منابع مشابه
Exact Expectations of Minimal Spanning Trees for Graphs with Random Edge Weights
Two methods are used to compute the expected value of the length of the minimal spanning tree (MST) of a graph whose edges are assigned lengths which are independent and uniformly distributed. The first method yields an exact formula in terms of the Tutte polynomial. As an illustration, the expected length of the MST of the Petersen graph is found to be 34877/12012 = 2.9035 . . .. A second, mor...
متن کاملExpected Lengths of Minimum Spanning Trees for Non-identical Edge Distributions
An exact general formula for the expected length of the minimal spanning tree (MST) of a connected (possibly with loops and multiple edges) graph whose edges are assigned lengths according to independent (not necessarily identical) distributed random variables is developed in terms of the multivariate Tutte polynomial (alias Potts model). Our work was inspired by Steele’s formula based on two-v...
متن کاملMinimal Spanning Trees for Graphs with Random Edge Lengths
The theory of the minimal spanning tree (MST) of a connected graph whose edges are assigned lengths according to independent identically distributed random variables is developed from two directions. First, it is shown how the Tutte polynomial for a connected graph can be used to provide an exact formula for the length of the minimal spanning tree under the model of uniformly distributed edge l...
متن کاملCounting the number of spanning trees of graphs
A spanning tree of graph G is a spanning subgraph of G that is a tree. In this paper, we focus our attention on (n,m) graphs, where m = n, n + 1, n + 2, n+3 and n + 4. We also determine some coefficients of the Laplacian characteristic polynomial of fullerene graphs.
متن کاملMinimal spanning forests
We study minimal spanning forests in infinite graphs, which are weak limits of minimal spanning trees from finite subgraphs corresponding to i.i.d. random labels on the edges. These limits can be taken with free or wired boundary conditions, and are denoted FMSF (free minimal spanning forest) and WMSF (wired minimal spanning forest), respectively. The WMSF is also the union of the trees that ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010